JGP-Vol. 2, n. 3, 1985

Positivity of energy in five dimensional
classical unified field theories, II*

A.H.TAUB

Mathematics Department
University of California
Barkeley, CA 94720

Abstract. Five dimensional classical unified field theories as well as Yang-Mills
theory with gauge group U(1), are described in terms of a Lorentzian five dimensio-
nal space Vs with metric tensor v, g which admits a space-like Killing vector §¢. It is
assumed that: (1) Vs has the topology of V4 xS, 8! is a circle and V, is a four
dimensional Lorentzian space that is asymptotically flat and (2) the Einstein tensor
Tyg of Vs satisfies I’aﬁU"‘vB<0 where U® and v* are future oriented time-like
vectors with y,z0*{ 8=0. The spinor approach of Witten [4], Nester [3] and
Moreschi and Sparling 5] is used to show that the conserved five dimensional
energymomentum vector P* is non-space-like. If P*=T, ;=0 then Vs must
admit a time-like Killing vector. Lichnerowicz’s results [1] then imply that Vs
must be flat. A lower bound for P* (the mass) similar to that found by Gibbons
and Hull [6) is obtained.

INTRODUCTION

It is the purpose of this paper to prove the analogue of the positive energy
theorem of the Einstein theory of general relativity for a five dimensional space
V5 that has a Lorentzian metric Vap (a,=1,2,3,4,5 throughout the paper)
and which admits a space like Killing vector {“. We may choose coordinates in
V, so that

(*) An outline of this paper appeared in Letters in Mathematical Physics 9, 243 (1985),
under the title «Positivity of energy in five dimensional classical unified field theories».
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(1.n ds?= 7wdx°‘dx" =g, dxdx/ + w2(dx5 + A, dx)?,

where i, j take on values from 1 to 4

(1.2) ¢ =8¢,
and
(1.3) $5¢Py,, = W2=0.

The quantities g; ;, 4, and W are independent of x5 and are functions of the x*.
They are determined from field equations that are derived in various theories
in which the space V, plays a role.

This space may be considered as the principal bundle over a four dimensional
space with metric tensor 8 with fibre group U(1). The A, are then the connec-
tion of this bundle and the Yag form the coefficients of the right translational in-
variant metric on the bundle. W is then a scalar field over V,. We shall restrict the
bunlde to be a trivial one. That is we consider the case where ¥ is diffeomorphic
to ¥, x S, (5! being a circle).

The space Vg arises in the classical unified field theories of Jordan-Thiry and
of Kaluza-Klein [1] and in Veblen’s theory of projective relativity [2]. In the
two latter theories it is assumed that W = 1. The geometric interpretation of 4,
differs from that stated above however in all of the theories mentioned it is
interpreted physically as being proportional to the potential vector of a Maxwell
field. In the Jordan-Thiry theory the scalar field is interpreted as being related
to a varying gravitational «constanty.

We shall take as allowable coordinate transformations those which preserve
equations (1.3). These are given by equations of the form

¥ =% (xh)
4 % =x5 + A(x).

Under such a transformation we have

i axk ax!
Bip = Bu axi axf
_ ox/

(1.5 A; =A]. 5‘;{ _A’i

A =1

W) = W(x' (%))
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where we use the notation that

oA
(1.6) A= —
ax!

We shall assume that the space ¥, admits spinors and that these can be lifted
to the space V. We shall use a slight modification of Nester’s method [3] for
dealing with Witten’s [4] proof of the positive energy theorem in V,. The modi-
fication has been used by Moreschi and Sparling [5] and consists of using a
three-form in ¥, formed from four-component spinor field and its covariant
derivatives instead of a two-form in ¥, formed similarly.

The positive energy theorem given below is similar to that of Gibbons and
Hull [6]. It is derived by assuming the existence of solutions of the analogue
of Witten’s equation in a four-dimensional space-like hypersurface in V. This
equation may also be written as an equation in a three-dimensional hypersurface
in V4. The existence of asymptotically constant solutions of this equation has
been proven by T.H. Parker [7].

2. THE VACUUM FIELD EQUATIONS

These equations are obtained from the variational principle
61 =0

where
2.1 Izj\/—'de5x.

B is the scalar curvature formed from the Vo and all the Yop ATE varied subject
to the condition that they and their partial derivatives vanish on the boundary
of the region of integration. The Euler equations of this principle are then

1
(2.2) ref=pef_ ? ¥**B =0

where B? is the Ricci tensor of V.
If the variation is subject to the condition that

8755 =8(W?) =0

as is the case in the Klein-Kaluza theory and in projective relativity then the
Euler equations are
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(2.3) r,,—A,A,T =0.

We denote the covariant derivative of a X in V5 by Xa,ﬁ. We further define
the Riemann-Christoffel curvature tensor of V5, Blfﬁ7 to be such that

(24) X

aipy

— &
Xoins = X By

The Ricci tensor is taken to be

(2.5) B, =B

afé *

In the discussion of the geometry of V5 it is convenient to deconpose various
indexed quantities into those with no index equal to 5, with one index equal
to five, with two indices equal to five etc. Thus we have

_ ¥si Vs
&y =Yy — ——
Tss
s = W24,
V55 = W?
(2.6) il = gii

751' =_gi]'Ai =_Ai
=W 2+g74,4,
y = det (v,,) = W2det (g;)

where gi"gl.k = b1,
Let wé(a = 1, 2, 3, 4) be a set of four one forms in V such that

feX) wi=0
and
2.8) Ngp wit =gi].dxidxf

where 7, are the components of the metric tensor in Minkowski space with
signature (+, +, +, —).

Let
wi = W(4,dx' +dx°)
so that
(2.9) w? = WA, wl=W.

Then
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Yugdx*dxf = 17917_0)%)é + (w)?= ngéwgwé.

The five one-forms determine an orthonormal pentad of vectors e, such that

w(e,) =87 (@,=1,2,3,4,5)
we have

eg:o, ej:W‘l, e25=—Aieé/=—A§.
GO s eefewa,

The Cartan connection one forms w2 » are defined by the equations

(2.11) dwl=w? Aw

where as usual d denotes the exterior derivative and A denotes the exterior
product. If may be verified that

wgé,. = (Dﬂéi + Fﬁéw";
whs = WFEé

(2.12) o, = P2t — pes]
wgés =— Wpé

where

g

= %

(2.13) W N
Fo = iy =404

and the underscored latin indices are manipulated by 7, and 7% In addition
G)ﬁi are the connection one forms for V4 with metric 8 and are determined from
the wf by the analogue of equations (2.11).

The curvature two forms are given by the equations

It may be shown that the components of the Ricci tensor of V, in the orthonor-
mal frame are

a, B —
(2.14)  Buegef =By =Ryt
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af"a "S5 as 2 a

(2.14)

Bgesef =By = — AW —F, Fit
and

20W

B=n%B =R+ —— +F,F
where

R, =Re e
(2.15) R=n%R,

Rii is the Ricci tensor formed from 8> and the stroke denotes the covariant

derivative with respect to this metric. Thus for example

¢g|c (¢a i —¢b w-ﬂl) e = ¢1I]eae_]

and

(2.16) Ff =F/ ¢

AW = n% W —g"fw”}.

_ 2
.17 F,_zg— —I;/—z (W Fg£ e
! b
— a.
F§§ =— -5 (R + 3F"ng)
where
1
(2.18) ngzRgb——ingbR'

When we write
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(2.19) A, =(161G)Y¢,
and define
(2.20) f;] = ¢i,]’ - ¢j,i
! d
(2.21) 7;2 = fuehy*— 7 Mgy F < Joa

then the first of equations (2.17) becomes
2 E :
(2.22) QQ:GEZJ+87TGW 72111 + W [nglz_ngleW]

TaEb is the stress-energy tensor of the Maxwell electromagnetic field determined
by the potential ¢,. The second of equations (2.17) become

(167 G)V2 .
[
(2.23) Ft_zé = ——2— [ng—‘£+ 3 W,g];—]
When W =1, the vacuum field equations for V;, the equations Faa —AaAﬁF
= 0, become
_ E
(2.24) Gg,2 =— 87rGTg,_J
(2.25) j:f,c =4nJ =0.

These are the Einstein-Maxwell equations where the source of the gravitational
filed is a source free electromagnetic field.

3. SPINORS

In Appendix A an irreducible set of five 4 x 4 complex matrix valued functions
of points of V,5 7,(x) is constructed and their algebraic properties are discussed.
These v (x) satisfy

3.1 Yo LX) + 7, (x) 7, (X) = 27,,(0) 1, (,=1,2,3,4,5)

in every coordinate system of V.. Thus under a coordinate transformation in
V5 of the form

x ¥ = x*¥¥(x)
we have

dx?

(3.2) v F(x*) =7ﬁ(x(x*))
: 9 x*
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that is the v, transform as covariant vector in V5.
However, the v, are not uniquely determined by equations (3.1) for if 7, (%)
satisfy them as so do

3.3) v, =Tt
when T(x) is a complex non-singular 4 x 4 matrix and #(x) is its inverse, that
is
(3.4) tT=Tr=1,

We regard T as a coordinate transformation in a four dimensional complex
vector space S4(x) the spin space at the point x® of Vs' The totality of S4(x)
for x* ranging over all points of Vs is the spin bundle. Sections of this bundle,

Y (x) are called spinors. Under the transformation 7(x) given by equations (3.3)
¥ transforms as

(3.5) V') = Ty )™

and is said to be a spinor of weight w.

The discussion of the covariant derivative of such spinors given below follows
that given by Veblen and Taub [8]. We denote the covariant derivative of { =
=[] by

(3.6) V=¥, + T, ¥—wtrace (T )Y
where

T, =Tyl
is the spin connection and it has the transformation law

ax*?
! — —
=T+ t’ﬁ) P
under coordinate transformation in S, and Ve.
We shall require that the operation of taking the complex conjugate of spinors
commute with the operation of taking their covariant derivative. We shall further
require that

(3.7) Vo5 = 0.

It then follows from the results given in the Appendix, equations (A.23) to (A.28)
and (A.30), that

(3.8) ¥.,=0.

’

It may also be shown as a consequence of equations (3.7) and the reality of the
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Christoffel symbols of V; that
(3.9) H,=0

where H = | H, || is defined by the equations (A.32).

We assign to contravariant spinors YL the weight 1/4, to v the weight — 1/2,
to v, the weight zero, and to H the weight — 1/4 and anti-weight — 1/4. Then
equations (3.7), (3.8) and (3.9) read

(3.10) Yars=Yo,p— Yo Tas+ K% — 7K, =0
(3.11) V=7~ 7K+ (rK)T=0
(3.12) H,=H,—HK,+HK)"=0
where
1
(3.13) K,=| kY50 = T — " (trace T)1,

and the bar denotes the complex conjugate.
Multiplying equation (3.10) by ¥” and taking the trace we find that

(3.14) 4T, = trace (25,7 K, + 77, o).

These equations may be solved for the Kﬁ by multiplying them by v, ¥ and
summing on 4 and «, using equations (A.30), (A.31) and equations (3.11). One
obtains

(3.15) 4Kﬁ=7a(’y,°;3+'y"’l":3) + 2nﬁ
where

— R
(3.16) nﬁ—uy L7RM,[3"'

When the matrices v, and v* are defined as in the appendix then the matrices
Yim and 7LM are constant matrices as is the matrix H f7e Since n 8 vanishes in
this case, equation (3.15) may be written as

— ¢ b,.,a
(3.17) 4K,=S w2

where w,; is given by equations (2.12). Note that equations (3.10) and (3.11)
then state that

T _
(vKpT =K,
that is, y K, is symmetric and that

(H_K)T:HKﬁ
8
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that is, HK 8 is hermitian.
Equations (3.17) may be written as

. W, _.
(3.18) 4K, = w[F,.js'f +2 7‘ 727'}

(3.19) 4K, = 4K, + 44, K, —2F, 5/

where I?l. and ¥° are the spin connection and v matrices respectively determined
by the metric tensor 8 These equations hold when the coordinate system in
each fibre of the spin bundle is such that the matrices v (x) are given by equations
(A.38). Equations (3.15) may be used to calculate KB when the coordinate
systems in the fibres of the spin bundle vary from point to point in V. That is
when the matrices v, (x) are replaced by

(3.25) Vo = T(x)y, 1(x).

The matrices "ii, 7R 5.., and SV are given in terms of 4" and v, in the appendix.
i* ~Yij i

4. THE SPIN CURVATURE
It is a consequence of equations (3.6) that for spinors of weight 1/4
Vieg ™ ¥ipa =~ Bap¥
where the matrix §_, = | BLy sl is given by
4.1 Baﬁ=KB’a—Ka,6+KaKa—KﬁKa.
The rules of covariant differentiation enable us to write
(4.2) YVaspy — Yasys = %68 agy T YaBgy = By, % = 0.

These equations may be solved for Bm[37 by multiplying these by <, and taking
the trace to obtain

(4.3) 2B —trace (S__B, ).

eafy = ea ~ By

It may be verified from equation (A.18) that
4.4) 4B‘37 =BawsS€6
satisfies equation (6.3). Also since trace Kﬂ = 0 it follows that

4.5) trace BM =0.

It is a consequence of equations (4.1) and (3.11) that
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T_
(4.6) (1B, T =7B,,.

This equation also follows from equation (4.5).

5. THE FIVE-DIMENSIONAL ENERGY MOMENTUM VECTOR

Since the field equations of the five dimensional theories we are concerned
with are derived from a variational principle involving the scalar curvature of
V, one may use the arguments of J.N. Goldberg [10] and J. Isenberg and J.
Nestor [11] to show that the total energy momentum 5-vector for an asympto-
tically flat V is given in terms of its Christoffel symbol by

EUA o

1
(5.1 167G, PaUazagUkaaﬁ"g”éAF;B;doo
S

where U® is a constant vector, G5 1s a constant we shall relate to Newton’s gravi-
tational constant G,

1
ATf, =T — Tk = O(ﬁ) ,

I’é‘g and 0F673 are the Chirstoffel symbols computed from the metric of V5 and the
flat metric to which it approaches respectively, is a three surface at infinity and
do_, isits area two form.

It may be verified that when

1
(5.2) 7a5=n05+ ha5+ O(r—z)
then
A safo vbd _ afo,, v
(5.3) UMosre” ATy = UNESEon ™ ne(hy  —hyo )

In equations (5.1) to (5.3) inclusive the indices range from 1 to 5. If they are
restricted to range from 1 to 4 and G5 is replaced by G, these equations reduce
to those that obtain in a four-dimensional space-time.

Following the observation of Nester [3] and Moreschi and Sparling [5] we
note that we may write equation (5.1) as

1
(5.4) 1611G, P, U~ =§E“5—2- do,,

S
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with
[ 23 -
(5.5) E®8 = E*SV5¢(y*S , §. — Y% S, ¥)
where the quantities entering into this equation are defined as follows:
(5.6) EoBvbe - (7)—1/2€a1375£
is a pure imaginary quantity with e*#7°€ the Levi-Civita alternating tensor density,

(5.7) y*=yTH,

as above the semi-colon denotes the covariant derivative and the S, g are defined
by the analogues of equations (A.14), namely

(58) 2Sa5=7a7ﬁ_7ﬁ701'

When the Vyp ATE given by equations (5.2) we have

@524 Bex S
(5.9) wg= b2+ — hym +0( )

(5.10) 2w, =h 0 sy

It then follows from equations (3.17) and (A.15), the reality of w*SaﬂlI/ and the
fact that

Wage T e T Pegg = 0
that
! A
VIS Ve T WS v = 5 Eppap Vo ec®
where
(5.1D) Us=yir*y,.
Hence

af _ gofe yrv o AR
E _6M£U w?

and is equal to the integrand in euqation (5.1).
Equation (5.1) may then be written as
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1
(5.12) 167G PuU"‘:% ;E"‘Bdaaﬂsz"‘ﬁ;ﬁnad“v
s b
where Z is a four dimensional hypersurface bounded by S, n_ is it unit normal,
dv is its invariant volume element, and Stokes’ theorem has been applied.

We now turn to the evaluation of the four dimensional integral in equations

(5.12). It follows from equations (5.5),(4.4), (A.16) and (A.17) that
af B8 e € Ba __ Be __
, E®F == 4Ry Y vy T A Y
5.1
13 =YYy, )+ 20T

where F“ﬂ is the Einstein tensor formed from Yopr (it has been evaluated for
the case where equation (1.1) holds in section 2),

UP = w*,),ﬁw

and is a future oriented non-space-like vector.
We shall assume that the hypersurface T is space-like and has as its normal
the future pointing time-like vector

n®= ez
that is
n, =-— wf
Then
(5.14) nE3f=— WIES =+ 2T e FUP— 4 iy, K+ 2354y, )
where
yi=—n",
(5.15)

To= k"7 = (¥*+ efed,,

and thus £®¢ is the induced positive definite metric on Z.
It then follows that

doaﬁ
(5.16) 161rG5PaU“= E“ﬁT <0
5

under the assumptions that the analogue of the Witten equation, the equation

(5.17) Jey,, =0
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holds, and that
(5.18) [,Un’<o0

for arbitrary future pointing non-spacelike vectors U* and n®. Equation (5.17)
will be discussed in Section 7.

The inequality (5.16) implies that for any Lorentzian five dimensional asym-
ptotically flat space V; for which equations (5.17) and the inequality (5.18) hold
has positive energy, that is P is a future pointing non spacelike vector.

When ¥, admits a killing vector {*, n® in the inequality (5.18) is restricted to
be such that

and

Gy =—87G(T) + TS),

ab

the inequality (5.18) implies that
2T Ve > (4mV2G V2| n4)|
where

e
a_.

| U2

is an arbitrary future pointing non-space-like vector in V, as is né,

6. THE INTEGRAL OVER S

In evaluating this integral for the case where equation (1.1) holds, we shall
assume that the three dimensional space S consists of the direct product of S
a circle over which x° varies, and S’ a two dimensional surface in ', the three
dimensional space x* = constant and x> = constant. We denote by r the distance
of points in £’ from a fixed point (the origin and take as S’ the points of £ for
which r takes on a large constant value.

We also assume that V5 has a metric tensor given by equation (1.1) and that
onS

0<x><27R,

1
.

r
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1
w=1+o{=)
r

)

and neglect terms of order " with n > 2.

75

We shall further assume that the three surface S is given by the parametric

equations
xt=xIwlu? (i+#4,5)
(6.1 x* = constant
xS =ud.
Then
I
(6.2) doaﬁz ; vaaed‘r*’56
where
0xY 9x® 9x¢
(6.3) drYbe = gobc dul du?du?,

du® dub quc
It follows from equations (6.1) that

2d770¢ = (878} + 858 + 85670y drY dx®

5 7ij
where
(ax’ ax\  axt ox/ .
A7/ =|— — — — — |duldu?=
oul qu?  Hu? aul)
(6.4)
= — Elkg5
2

It then follows from equations (5.5) that

1
5 Eaﬂdoa{’: 21{1[1 *’)’5"5’}¢;]- — \J/;';-'Ys:)?i‘// +

(6.5)

1 "
S A w;*sS,-Mde”dxs

(a,b=1,2,3).
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where

(6.6) ¥i=m— A= Wi,
and hence

6.7) '7,.'71. + '7]'7‘ =2g;1,.

From equations (3.18) and (3.19), and since ¥ is assumed to be independent of
5

x° we have
! ~k
V=V, 4K 0~ 3 Ey ¥ vsv
(6.8)
4 - W, .
— — I k4 ~l
JJ;S—KS\[J— :— F'.].S]+2 7 Vs
with
(6.9) ¥ =g'%,
(6.10) 287 = 551 515,

and the stroke denotes the covariant derivative of spinors over V.
It follows from equations (A.15), (A.18) and (6.8) that

1 L dé,
7 E¥do,,= W[E” —?” +(iF,.;!‘Ué +iF, y*y +

< em P\ ]
+iE.,  Ugtm — )dr” dx
ijkl W

where
- k!
2F17 = EijkIF J
a pure imaginary quantity as is ¢*y,
U__; =y *7._5 Y
and
U= v*3'y.

We define
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. * ij _
i %]:l dr 8 1rQE R

5

(6.11) %fi].dr"f =870,
8

i

i%E..klgk’" W Ulari = 16nGw, Un.
s

The quantity @, vanishes when equation (2.20) holds throughout the two
surface S', that is, when ¢; is non-singular. The vector w, vanishes when W is
constant.

In view of these definitions and the fact that for the case we are considering
all quantities are independent of x5, we have

1 l ~.
§é— E“ﬁdoaﬁ =167G[(p; +w)U" +
27TR0 2

(6.12) + G 27129 U +iG V22 g, yry) <o.

The inequality (6.12) when applied to the case where Ul = Bi implies that
(6.13) m=—p,>w,+ G V2al}Ql+ 022,

Aside from the units used, this result is that given by Moreschi and Sparling
[5] and differs from that of Gibbons and Hull [6] by a factor of 1/2 in the charges.

If for arbitrary hypersurfaces ¢ = constant, equation (5.17) holds and the
inequalities (6.12) and (6.13) are replaced by equalities we must have

(6.14) r,=0
(6.15) kPey =0

for each such hypersurfaces. That is i must be a covariantly constant spinor
field in V5, in other words, we must have

(6.16) Y. =0.

We shall prove in section 8 that if a V5 with metric given by (1.1) is regular,
equations (6.14) hold, V5 is asymptotically flat and admits solutions of equation
(6.15) independent of x°, then it has a vanishing curvature tensor that is, is flat.
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The proof consists of showing tha such Vs’s are stationary and hence Lichnero-
wicz’s results on stationary Klein-Kaluza and Jordan-Thiry theories [1] apply.
Thus we find that spaces V5 satisfying the above conditions which have vanishing
energy -momentum vectors P are flat.

7. THE WITTEN EQUATION IN V,

This equation is given by equation (5.17), namely
(7.1) TP.5=0

where 7 is defined in terms of 7, by equation (5.15). We want to discuss solu-
tions of this equation that are independent of x3. We shall first reduce equation
(7.1) to an equation in V4, the four dimensional space with metric tensor 8- We
observe that it follows from equation (5.15) that

ci _ pion — piffm — Biln
(7.2) Y=k, = Oy — Apyg) = Y,
where
(7.3) hil =g +e§e£.

The tensor hil. is the metric induced by the metric g; on the subspace t = x* =

= constant in V4.
We also have

AS _ ‘1 {7~
(7.4) =W Y5 — ht]7iAj~

It is a consequence of equations (7.2), (7.4) and (3.24) that equation (7.1) may
be written as

(7.5) hIF Y, =AY

where
o . )
i~ o~ _
A.—_—Eh’—yjy Fl.k—W 751(5

and K5 is given by equation (3.23). Thus we have
1 - . W‘i y
(7.6) A= Z F;-]-Sl]’)‘é + 2ij’y4’y '7;5—2 ; Y.

The existence of solutions of equations (7.5) with general spin matrices 4 has
been proven by T.H. Parker [7].
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8. COVARIANT CONSTANT SPINORS IN V,

Such spinors satisfy the equation

(8.1) V,=0
If in addition they are independent of x5 that is if
(8.2) Vs=K;y=0
and equations (8.1) and (8.2) may be written as
1 .

(8.3) by == S Eyiin v =0
and

W,
(8.4) [F,.].S” +2 —uT 'yé'Y‘]w =0

respectively. The first of equations (8.3) are similar to but different from the
equations used by Gibbons and Hull in their introduction of a supercovariant
derivative of spinors [6].

The vector field £* defined as

(8.5) £ =y*ry

where  is covariantly constant, that is, satisfies equations (8.3) and (8.4) may
be shown to be timelike except when

(8.6) Fij = W’k = 0.
It is a consequence of equations (8.1) and (8.2) that
(8.7) E:"B = E,“S = 0.

Hence £* is a time-like Killing vector in V. That is if equations (8.1) hold Vs
is stationary and when equations (1.1) hold, the Killing vector £* is independent
of x%.

We next show that the space - -time V with metric & is stationary that is,
admits a time-like Kiiling vector E’ such that the Lie denvatlve of W and F with
respect to E’ vanishes. The Killing equations in V are

Y Y a
(8.8) E g,y F Yar Elp T 7,5E5=0
By setting &« = § = 5 one may show that

(8.9) CEW, =EW, =0
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where
(8.10) B =y*y'y =g,
On setting @ = 5, B =i in equations (8.8) one finds that

Fi £ 5 _

(8.11) B, + A4, +8,=0

It is a consequence of the relation between v and 75 that

(8.12) E=wlg -4

On substituting this equation into equation (8.11) one finds that
- 1%

(8'13) EJITU = ? (w_lfé)',--

Since
Ei =y *7§ v

it follows from equations (8.3) that
E; T S F;'/ ¢

It is a consequence of this result and equation (8.13) that

(8.14) (ES)’,- =0,

that is, £, is constant.
Equations (8.3) and (8.10) imply that

(8.15) Ej“' =F,'I'E-_§
and hence
(816) gif/ + gilj =0

that is E" is a time-like Killing vector of the space-time ¥, with metric tensor
8- It follows from equations (8.9) and (8.11) that the Lie derivative with respect
to Ei of the tensor Fil. vanishes, that is

Tk Tk Tk —
E°F,  + F k' + F, 85 =0.
On making the transformation of coordinates in ¥V, of the form
x3*% = x5 4 Y (x)
x* = ¢i(x])

and thereby insuring that
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(8.17) £ =87,

while
£ = 8¢

is also a Killing vector in V. In such a coordinate system equation (8.11) becomes
Ea,,+A4¢ =0

Thus V4 admits a one parameter group of isometries generated by the Killing
vector £, under which the scalar W and the vector field 4, are invariant. If the
hypersurfaces x° = constant in Vs are globally isomorphic to the direct product
of a three space V3 and the real line, then V5 is isomorphic to the product V3 X
x R x ST and is said to be a stationary space. It is said to be complete if V3 is
complete and asymptotically flat if V3 is.

Lichnerowicz has shown [1] that enerywhere regular, asympotically flat (or
complete) stationary spaces V, with metrics given by equation (1.1) for which
Faﬁ = 0 are flat, that is have

everywhere. Thus the spaces VS which are everywhere regular, asymptotically
flat, have Einstein tensors satisfying the inequality (5.18) and have vanishing
energy -momentum vectors P are flat.

9. THE SPACE V,

This space is a five dimensional space whose metric tensor "y'aﬁ is conformal
to that of V,, that is

(9.1) g = €27,

where Yap is given by equation (1.1). We again define

Vs Vs,
(9.2) g, =7, — 22 e
uv My
Tss
and have
(93) ,755 —_ sz ezawz — 620755
= Vvl _ 7 -4 — -1

(9.4) (Oss)™ Vs = A, = A4, = (¥55) " 75,

The function o(xi) is determined by the requirement that the integral
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7:/\/—'71? d®x

where ¥ is the determinant of ¥, Yup , and B is the scalar curvature of V such that
the coefficient of V— R is constant when g is the determinant ofg and R is
the scalar curvature computed from g g, This condition implies that

c=wls,

It then follows that

=B —

1 —
Faﬁ af E —izxﬂB’

where Eaﬁ and B are the Ricci tensor and scalar curvature determined from 7&(3’
are given by

_ [w_aﬁ 2 w_aw,ﬁ] [w_w 2 w,yw,é] )
(9.5) L,=T —|—= - — == |4, —— — — =7,
af b 1% 3 w? Blw 3 w2

In these equations the semi-colon denotes the covariant derivative with respect
to Yas
It may be shown that

fb =Fa %8P = ¢ 2T _e%ef

8°a"hb B a“p
is given by
(9.6) eZOF =G,y +. 87rGw2TE + 7;2
where TZ is given by equation (2.21) and
1
9.7 3w2Tg§: 2[w,£w,k ~3 Mgy M7 u{lw,é}_

It has been shown (cf. [13]) that TF is the stress energy tensor of a perfect fluid
that satisfies the equation of state

p=w

where p is the pressure and w is the energy density; and further the motion is
irrotational. That is,

Tp =W +p)o,¢, —Pny,

where
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1 WiW].gij
w:p:— _ﬁ- >
3 w

(9.8)
wi

VW, Wikgik .

i

Xi:

The relation between the scalar x and the scalar that occurs in the Brans-Dicke
theory of gravitation is given in [13].
In addition we have

1

(9.9) eIy, = — (WF9 .
w
and
_ 1 AW 4 w_w
(9.10) 2T, =~ — (R+ 3F%F,) + — — — ntt == =2
= 2 25w 3 w2

where Fab is given by equation (2.13).
The si)in connection 1?7 in I_/';. is related to K7 of V5 by the equations

(9.1 K7=K7+ 6—WS7.

It then follows from equations (3.18) and (3.19) that

_ [ .. AW, .
4K, = W|F.§1 4 —L 4 4
5 i 3w 2

(9.12)
_ _ 2w
4K, = 4K, + 44K, — 2F; iy, + — —L
23 W
?

~
"‘-\..z

The discussion of §5 may be applied to the space % When the v, and the spin-

-covariant derivatives are replaced by

(9.13) Y, =€,
and
(9.14) V.=V +K ¢

respectively. Then it follows that P%, the total energy momentum 5-vector in
Vs’ is a future pointing non space-like vector, that is, 175 has positive energy when

(9.15) YV, =e 7Y, =0
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and
(9.16) T,Unf=e 2T U*n*<0

where the colon denotes the covariant derivative with respect to the spin connec-
tion K and T, ¢ is given above.

It follows from equations (9.12), the discussion similar to that given in §7,
and Parker’s results [7], that solutions of equations (9.15) exist.

When V admits a Killing vector £%so does -175 If n“is restricted to be such that
n, &%= 0 and the coordinate system in '175 is such that £ = 8¢, the inequality
(9.16) implies that in this coordinate system

l‘/s
UPRb (G, + 8T WP + T + - nb(W(167G)V2£), < 0.

Setting
M 2rE ! F
(9.17) Ggé=—81rG(7_;Q +WATE + — If
87 G
we have
_ w 1
(9.18) TM VoL > (4m)2G- 12| — T nk+ — W f€
ab 5 b 47 Nod

where T:; is given by equation (2.21), f; is defined by equation (2.20) and Jg
is defined by the first of equations (2.25).

Equations (9.17) state that the source of the gravitational field 8 depends
linearly on the stress-energy .tensor of the electromagnetic field described by
¢;, that of the scalar field W (which in turn describes the variation of the «gravi-
tational constant») and the tensor T%, the stress-energy tensor of additional
fields arising in particular problems.
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Appendix

THE MATRICES v,y AND H

A. The Matrices v, v and H

In this appendix which, is based on the notes of a seminar on «Geometry of
Complex Domains» conducted by O. Veblen and J. von Neumann in 1935-36
[12], we construct and discuss the algebraic properties of aset of 2v + 1,2V x 2¥
matrices ﬁa (=1,2,3,...,2v+ 1) which satisfy the equation

(A.1) 5aﬁﬁ+5ﬁ5a=25a512u~
We shall subsequently set v = 2 and then define matrices v, which satisfy
(A2) YaYoF VY = 2%l

where Yap is the metric tensor of V. We begin with the three 2 x 2 matrices

(1) (O i) (D (0 1) H )3(2D) (1 O)
A3 = = =—ipDp{? =
( ) Bl —i 0 > 62 1 0 > ﬁo lﬁl 62 0 —1
and define
B(u—l) 0
p
51(’”)2( 0 —B(”_D) p=01,...,2w—=1
(A4) 7
0 il U
k
Y = B =
2u-1 —ilk 0 v lk 0

where 1, is the unit 2~ ! x 2v7! matrix.
It follows by induction that

(A.5) B = (=i .. Y
and that (on omitting the superscript v)
(A.6) Bl =(—1B; B,=(—1)%6,; BI=8,

where A7 is the transpose of the matrix 4 and « is not summed in these equa-
tions. That is, the matrices B, are hermitian. The matrices

1, By, B, Byl <6),B,B,8 (¢ <B<7) ...
B, B, Bl <o, <. ..<a)
1 72 v
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are a set of 2% linearly independent matrices which form a basis for all 2" x 27
complex matrices.
We next define

v, =B,(i=1,2,3,5...,2v)
(A7) 4= 1B,
Tawe1=Po-

Then the 2v 4 1 matrices v, satisfy
454
(A.8) %, 75+ A 2n —2(8aﬁ—-26a Sﬁ)

with Yo (o # 4) hermitian and Yy anti-hermitian.
It follows from equations (A.1) and (A.5) that, when the d’s all differ,

(A.9) Vo Vo o Yy = -—(1)U YT

2y % 2 Xu+1
where
(A.10) vE=n2ty
and

afl S«
(A.11) n--nh— 65.

We define
By 8

! = =1 =p =2,3...v).

(A.12) p.Sa ng—'y‘g 'yéz...7 Ba it (p , 3 v)

The traces of the matrices v, S, ayp vanish. Further S ap vanishes unless all

the indices ¢o; are different and in that case

SO( ...gp = ’Ygl’ygz e 7Qp .

It is then a consequence of the equation (A.9) that

— — () X
Q- Gy 2S§5 . @ EO‘ ~->22U42§§l’y

By-Byy-3t
(A.13) +(n>‘5 By Bay— 177‘6551 Bay-3® )681“'221:;—3

By-Bay—alr
+ S .
Mg e By~Bop—g 218 p—2

When v = 2, equations (A.12) and (A.13) become
(A.14) 2S_g=’727§—7g7g,
and

SagSsc= Eagoey ¥+ (Mo Mgy ~ MgeMas) 14

(A.15)
+n“S 'rzﬁgSaas aéSﬁe+nE§S

[+23
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respectively.
It is a further consequence of equation (A.9) that

(A16) Egl.ugzuf*z)\ﬂvsa . _ (21) _ 2)| (l')US?-\EE.
1 =20—-2
Since
YRASEE = Ryt N Rpuy
it may be shown that
(A17) S&E£=757373—75n52+ r)/ﬁnl’l\__fy'_’nﬁ'é
and that
(A.18) Sy Y 41§98 = ) (y2nfy — 4En2Y)

From formulas similar to equations (A.13) it may be verified that the trace of
the products of Sm1 o, and S884 yanish unless p = ¢ and in that case

Al §81 % I
(A.19) Sﬁl...gp*( D 12“ By Bp °

An arbitrary complex 2Y x 2¥ matrix x may be expressed as

- 1 Qg X
(A.20) Xzylu"'yg'Y*}‘Z — s
2 o — p' gl"'—p
p=2
with
2Vy = trace X
(A21) 2%p% = trace (Xv%)

a,..a Zp-1 Q.
20y 1TEP = (- ) 2 "™ trace (XS™17=P)y,

On substituting these expressions for y, ¥ y¥1" %% into (A.2)) and using the
fact that X is an arbitrary matrix we find that

-%(p—l)Sal...apD S 4
C 011...o<pB’

(A.22) 225280 = 8264 +v* P+ ) (-1
p=2

where A, B, C and D take on values from 1 to 2".
When the matrices v, are given as above we find that the matrix

(A.23) Y=PNY5- - Vauog

where p is a complex number, satisfies
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Lw
(A.24) yT=ey, e=(—12"""
and that
(A.25) ()T =fry, F=(=Dve

That is when v is even, the matrices v, 77, are all symmetric or all antisymmetric.
When v = 2 we may choose 7 so that 7, , the components of the antisymmetric
matrix 7y are normalized so that

(A.26) Vg Yep PP =—8 (4,B,C,D=1,2,3,4).
The matrix v and its inverse with components

(A.27) 27AB — eABCD Yep

which satisfies the equation
(A.28) 7A875C= 65

may be used to raise and lower indices of spinors. The rules are such that in
raising and lowering indices we always sum with respect to the second index
on the v’s involved.

The matrices

“=] MV =y ™!

I, WA Ty~
are anti-symmetric and together with y ! = I vLM | form a basis for all 4 x 4 anti-

-symmetric matrices X = || X |=— XT. Since

v = Y v =0t =0

the quantities

— _ N
27gLM = ELMPQ'YQPQ = 27LN'YQ M

That is the process of lowering the indices on 'yaLM by means of 7y gives the
same results as manipulating a pair of indices by means of the four index Levi-
-Civita anti-symmetric density. These two methods of manipulating indices

were discussed by Veblen [9].
He also used the fact any anti-symmetric matrix XM may be expressed as

2XLM=X7LM+XQ70LM
where
_ M
2X=—X Yim
a_ vIM .«
2X¢=X Y M
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On substitutiong for X and X* into the above equation we find that we must
have

(A.29) 7QLM7QPQ — vl =280
This equation may be written as

oL P _ 5. LP LsP LsP
(A30) Y= M'ng—27 Tom + 26Q6M—6M5Q
from which it follows that

afL P LsP Lp
(A31) S S o =—4050y+ 7 vyp)

Equations (A.30) and (A.31) hold only in the case v = 2 where as equations
(A.22) hold for arbitrary v.

Note that equation (A.23) defines the matrix v = |} Y48 ]| in a particular coordi-
nate system in a linear space Szv. In another coordinate system obtained from this
one by the transformation

tA _ TA B
yA=TA Y
we have
v =tTyt

where 7 is the matrix inverse to the matrix 7 = || TAB |l
In the coordinate system in which equation (A.23) holds the matrix

(A.32) H=|Hp|=,

is anti-hermitian. That is

H'=—H.
The (2v + 1) matrices Hya(a =1,2,...,2v + 1) are hermitian, that is
(A.33) (Hy )T = Hr,.

It then follows that

(A.34) (HS, o )7 =(= D(HS, o) =*HS

o -
Thus the matrices HSg, ap AT€ hermitian when
(A.35) (i=2s) b=1 or 2mod4

and are anti-hermitian when

(A.36) (i=2s+1) b=3 or 0 mod4.

The matrix H has the transformation law
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H =7TH:

and the matrices H7 HS Lgp have similar ones.
When w‘i are a set of flve one forms in V such that

(A.37) n,, wiw} =

ad

where v, is a metric tensor in V,  , the 2° x 2" matrices
— (38
(A.38) Yo = W5

satisfy equations (A.2) when v = 2 and the matrices

(A.39) 7= egnﬁéyg

where e;‘ are such that

(A .40) wges = 82

satisfy

(A4]) trace (7“75) = 2”6"3".

The matrices v, (and y*) determine a basis for all 2" x 2 matrices obtained
from the basis discussed above by replacing v, (and ¥*) by the former matrices.

One uses equations (A.38) and (A.39) to accomplish the replacement. It then
follows that the equations given above such as equations (A.8) through (A.22)
may be written as equations involving the 7, 's provided the n2£ (and n ) are
replaced by v** (and v, ¢ Tespectively.

In case v = 2 when the wg are those given in Section 2, we have

(A42) Y, =7, + WA, s
(A .43) Vs = W'7§
where
(A 44) ?fj + 7].'71. = 2g; 1,
when
(A .45) ¥ = w?’y£
Then
Y =y, =5 =877,
(A.46) y5= w—1(7 . WAi’7j)

The matrices
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(A.47) 28,,= 20T WES =7, Y5— V47,

et

are such that

Sy =S, + WAFys — WA s

ilj

(A.48) '

SSi = w’yé'yl
where

28 =% —
(A.49) S = S

o .

557 = wly ¥ — 4,57,
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