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Positivity of energy in five dimensional
classical unified field theories, 11*

A.H. TAUB

Mathematics Department
University of California

Barkeley, CA 94720

Abstract. Five dimensional classical unified field theoriesas well as Yang-Mills
theory withgaugegroup U(1), aredescribedin termsof a Lorentzianfivedimensio-
nal space V

5 with metrictensor whichadmitsa space-likeKilling vector~. It is
assumedthat: (1) V5 has the topologyof V4 xS~,S’ is a circle and V4 is a four
dimensionalLorentzianspacethat is asymptoticallyflat and (2) theEinsteintensor
T~of V5 satisfies FU°~u~~0 whereU°~and v’~are future oriented time-like
vectorswith ‘y~v9T~= 0. The spinor approach of Witten [4], Nester [3] and
Moreschi and Sparling [5] is usedto showthat the conservedfive dimensional
energymomentumvector ~ is non-space-like.If P~= = 0 then V5 must
admit a time-like Killing vector. Lichnerowicz’sresults [1] then imply that V5
must beflat. A lower boundfor P

4 (the mass)similar to that foundby Gibbons
andHull [6] is obtained.

INTRODUCTION

It is the purpose of this paperto prove the analogueof the positive energy

theorem of the Einstein theory of generalrelativity for a five dimensionalspace

that has a Lorentzianmetric ~ (ct,j3 = 1, 2, 3, 4, 5 throughout the paper)

and which admits a spacelike Killing vector ~. We may choosecoordinatesin

V
5 so that

(*) An outline of this paper appearedin Letters in MathematicalPhysics9, 243 (1985),
underthetitle tPositivity of energyin five dimensionalclassicalunified field theoriest.
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(1.1) ds2= 7a~dX0dX~=g

11dx’dx’ + W
2(dx5 + A~dx’)2,

where i, / takeon valuesfrom 1 to 4

(1.2)

and

(1.3) ~ w2~o~

The quantitiesg
11,A~and W are independentof x

5 andare functions of the x’.
They are determinedfrom field equationsthat are derived in various theories

in which the spaceV
5 playsa role.

This spacemay be consideredas the principal bundle over a four dimensional

space with metric tensorg.1 with fibre group U(l). The A1 are then the connec-
tion of this bundle and the ‘~a~form the coefficientsof the right translationalin-
variantmetric on the bundle. W is then a scalarfield over V4. We shallrestrictthe

bunlde to be a trivial one.That is we considerthe casewhere V5is diffeomorphic
to x S

1, (5’ beinga circle).
The space V5 arisesin the classicalunified field theoriesof Jordan-Thiryand

of Kaluza-Klein [1] and in Veblen’s theory of projective relativity [21. In the
two latter theoriesit is assumedthat W = 1. The geometricinterpretationof A~

differs from that stated above however in all of the theoriesmentioned it is
interpretedphysically as being proportionalto the potential vector of a Maxwell
field. In the Jordan-Thiry theory the scalarfield is interpretedas being related

to a varying gravitationalt<constant>>.
We shall take as allowable coordinatetransformationsthose which preserve

equations(1.3). Theseare given by equationsof the form

=

(1.4)
= x5 + A(x’).

Undersucha transformationwehave

ax~c ~
g.. =~~

1 —

ax
5 ax’

ax1
(1.5) A~=A.——A~

1
/ ax’

A5 = 1

W(~i)= W(x
1(~))
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wherewe use the notationthat

(1.6) A,~= —

ax’

We shall assumethat the spaceV
4 admitsspinorsand that thesecanbe lifted

to the space 115. We shall use a slight modification of Nester’s method [3] for
dealing with Witten’s [4] proof of the positive energytheoremin 114. The modi-
fication has been used by Moreschi and Sparling [5] and consistsof using a

three-form in V5 formed from four-componentspinor field and its covanant
derivativesinsteadof a two-form in 114 formedsimilarly.

The positive energy theoremgiven below is similar to that of Gibbons and
Hull [6]. It is derived by assumingthe existenceof solutionsof the analogue
of Witten’s equationin a four-dimensionalspace-likehypersurfacein V5. This
equationmay also be written as an equationin a three-dimensionalhypersurface
in 114. The existenceof asymptoticallyconstantsolutionsof this equationhas

beenprovenby T.H. Parker[7].

2. THE VACUUM FIELD EQUATIONS

Theseequationsare obtainedfrom the variationalprinciple

= 0

where

(2.1) 1 =f~Bd5x.

B is the scalarcurvatureformed from the ‘y~and all the ‘~c~are variedsubject

to the condition that they and their partial derivativesvanish on the boundary

of the regionof integration.The Eulerequationsof this principle are then

(2.2) F~=B~——~B = 0
2

whereB”~~is the Ricci tensorof V~.
If the variation is subject to the conditionthat

as is the case in the Klein-Kaluza theory and in projectiverelativity then the
Eulerequationsare
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(2.3) r~—AA~r’= 0.

We denote the covariant derivativeof a Xa in V
5 by X~.We furtherdefine

the Riemann-Chnstoffelcurvaturetensorof V5, B~’~to besuchthat

(2.4) X~—X~=X,B
6

13.

The Ricci tensoris takento be

(2.5)

In the discussionof the geometryof V~it is convenientto deconposevarious
indexed quantitiesinto thosewith no index equal to 5, with one index equal
to five, with two indicesequalto five etc.Thus we have

= ~ — _____

755

-fSi = w
2A

1

755

(2.6) ~ __gff

= —g”A~=

755 = w_
2 +g”A

1A1

= det (‘)‘,,~) W
2det (g

11)

where~
t1~/k =

Let w~(a= 1, 2, 3,4) be a setof four one formsin V~suchthat

(2.7) w~=0

and

(2.8) ~ =g
11dx’dx’

where ~ab are the componentsof the metric tensor in Minkowski spacewith
signature(+,+, +, —).

Let

= W(A1dx’ + dx
5)

so that

(2.9) wt=WA~, w~=W.

Then
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7axat~~ w~w~+ (~~)2=

The five one-formsdeterminean orthonormalpentadof vectorse
0 such that

(cs,8= 1,2,3,4, 5)

we have

e~=0, e~=W
1, e~=_-A,e~=—Ab,

(2.10) e,wf=~g, e~’wf=WAa.

TheCartanconnectiononeforms are definedby the equations

(2.11) dw~=~,kAw’~

where as usual d denotesthe exterior derivative and denotes the exterior

product.If may be verified that

= + F~w,~

~~b5 = WF~b
(2.12)

= F~w~— pa

= — Wp~

where

Wi.
= —- e~

(2.13) W

= -~- (A
1, —A1~)ee~

and the underscoredlatin indices are manipulatedby ~ab and 10. In addition
are the connectionone forms for with metricg1, andaredeterminedfrom

the w~by the analogueof equations(2.11).

Thecurvaturetwo formsare givenby the equations

= dw~+ A

It may be shown that the componentsof the Ricci tensorof V~in theorthonor-

mal frameare

(2.14) B~eaeI=Bb=Rb+ ~ab] +2F~~P~
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1
B e0e~=B = —~ (W~F~)

o~a 5 aS a Ic

(2.14)
1

Baae~=B~= _t~W_FabF2k

and

B = ~~B
0~= R + +

W --

where

Rai, =R11e,~e~

(2.15)
R

R.1 is the Ricci tensorformed from g~1,and the strokedenotesthe covariant

derivativewith respectto this metric.Thus for example
~aIc=(~5ai_~bwkai)e1c=ø e

1e1

iIf ~

and

WIb = W
1..eiej

-- i/_ak

(216) F~ =F’ .e’~ i~J_a

L\W = iO W~1,= g”W1~1.

It follows from equations(2.2) and(2.14) that

1 ab~d]

~ -- +
4-- -- W

1
(2.17) IT~=—~ (W

2FQ~)IC

= — — (R + 3F~F~b)

where

(2.18) G~= Rb — —

Whenwe write
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(2.19) A. = (l67rG)
1’2Ø

1

anddefine

(2.20) = —

(2.21) 1~~

then the first of equations(2.17)becomes

(2.22) cb = Gb + 8~GW
2T~+ — [W~ —~AW]

T,~is the stress-energy tensor of the Maxwell electromagnetic field determined

by the potential~. The secondof equations(2.17) become

(l6irG)”2
(2.23) = 2 [Wf~

1~+ 3 W1~j~].

When W = 1, the vacuum field equationsfor V~,the equations [~ —A~A~F

= 0, become

(2.24) Gab=—81rG1~

(2.25) ~~Ic = 4irJ = 0.

These are the Einstein-Maxwell equations where the source of the gravitational

filed is a source free electromagnetic field.

3. SPINORS

In Appendix A an irreduciblesetof five 4 x 4 complexmatrix valuedfunctions

of pointsof V5, y~(x)is constructedand their algebraicpropertiesarediscussed.

Thesey~(x)satisfy

(3.1) ~ (ctj3=l,2,3,4,5)

in every coordinate system of V~.Thus under a coordinate transformation in

V5 of the form

x~= x*~(x)

we have

a ~
(3.2) y*(x*) = ~y~(X(X*)) —

ax
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that is the a transformas covanantvectorin V5.
However, the a are not uniquely determined by equations (3.1) for if 7a(X)

satisfy them as sodo

(3.3) 7’=T’yt

when T(x) is a complex non-singular4 x 4 matrix and t(x) is its inverse, that

is

(3.4) tT = Tt = 14

We regard T as a coordinatetransformationin a four dimensionalcomplex

vector spaceS4(x) the spin space at the point xa of V~.The totality of S4(x)

for x~ranging over all points of V5 is the spin bundle.Sectionsof this bundle,
are called spinors. Under the transformationT(x) given by equations(3.3)

~1itransforms as

(3.5) t,li’(x) = TsJj(x)tW

andis said to be a spinorof weight w.

The discussion of the covariant derivative of such spinors given below follows

that given by Veblen and Taub [8]. We denotethe covariant derivative of ~ =

=~L~~by

(3.6) ~i~= ,Ji+Fi~i—wtrace(F)s,Li

where

~-‘ r’La M~
is the spin connectionandit hasthe transformationlaw

a ~
F’ = T(F,t + t

U axU

undercoordinatetransformationin S4and V~.

We shall requirethat the operationof takingthe complexconjugateof spinors

commutewith the operationof taking their covariantderivative.We shall further

requirethat

(3.7) ~0.

It thenfollows from the resultsgiven in theAppendix,equations(A.23) to (A.28)

and(A.30), that

(3.8) ~y0.

It may also be shown as a consequenceof equations(3.7) and the reality of the
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Christoffelsymbolsof V~that

(3.9) H~=0

whereH = IHLMII is definedby theequations(A.32).
We assign to contravariantspinors IJ.1’~ the weight 1/4, to 7 the weight — 1/2,

to the weight zero, and to H the weight — 1/4 and anti-weight— 1/4. Then
equations(3.7), (3.8)and(3.9) read

(3.10)

(3.11)

(3.12) H=H~—HK~+(HK~)T=0

where

(3.13) K~=IIKLM~=F~__(traceF~)l
4

andthe bardenotesthe complexconjugate.
Multiplying equation(3.10) by 77 and taking the tracewefind that

(3.14) 4Fj~=trace(2Sa
7K~+777a~).

Theseequationsmay be solved for the K~by multiplying them by 7,~7aand
summing on 7 and a, using equations (A.30), (A.31) and equations(3i 1). One

obtains

(3.15) 4K~=~(~+’y7r’~)+2~

where

‘316’ — RLfl~— 7 ~

Whenthe matrices‘y~and~yaare definedas in the appendixthenthe matrices

LM and ~ are constant matrices as is the matrix HLM. Since vanishes in

this case,equation(3.15) may be written as
(3.17) 4K~=S~wa~

where is given by equations (2.12). Note that equations(3.10) and(3.11)
thenstatethat

(~yK~,)T=‘yKfl

that is, ‘IKe ~5symmetric and that

(JJJ~)T 11K
13
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that is, HK
13 is hermitian.

Equations(3.17) may be written as

(3.18) 4K5 = + 2

(3.19) 4K1 = 4k~+ 4A1K5 — 2F1~”y5

where K1 and 3~’are the spin connectionand y matricesrespectivelydetermined

by the metric tensor g.1. Theseequationshold when the coordinatesystem in
each fibre of the spin bundleis suchthat thematrices ‘Ya(X) are given by equations

(A.38). Equations (3.15) may be used to calculate K13 when the coordinate

systems in the fibres of the spin bundle vary from point to point in V5. That is

when the matrices ‘ya(X) are replaced by

(3.25) 7’ = T(x)-y~t(x).

The matrices~‘, ~, ~ and 511 are given in terms of y~and ‘~ in the appendix.

4. THE SPIN CURVATURE

It is a consequenceof equations (3.6) that for spinors of weight 1/4

~‘;csj3 ~~13cs= —

where the matrix = 1 ~LMaIS~ is given by

(4.1)

The rules of covariant differentiation enable us to write

(4.2) a;137 ‘Ia;y13 = 6B’13 + ‘~‘a~37 BC7YU = 0.

Theseequations may be solved for ~ by multiplying these by ‘y~and taking

the trace to obtain

(4.3) 2B�~137= — trace(S�~B13.~).

It may be verified from equation (A.l 8) that

(4.4) 48137 =B137~S~

satisfies equation (6.3). Also since trace K13 = 0 it follows that

(4.5) trace = 0.

It is a consequenceof equations(4.1) and (3.11) that
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(AiZ~ ( j7 QJ ~.7U~
13 7 a13~

This equationalso follows from equation(4.5).

5. THE FIVE-DIMENSIONAL ENERGYMOMENTUM VECTOR

Since the field equations of the five dimensional theories we are concerned

with are derived from a variational principle involving the scalar curvature of

V~one may use the arguments of J.N. Goldberg [10] and J. Isenberg and J.

Nestor [11] to show that the total energy momentum 5-vector for an asympto-

tically flat V5 is given in terms of its Christoffel symbol by

(5.1) ~

where UU is a constant vector, G5 is a constantwe shall relateto Newton’sgravi-

tational constantG,

= r~—0r~=

and 0F~are the Chirstoffel symbols computed from the metric of V5 and the

flat metric to which it approachesrespectively,is a threesurfaceat infinity and

duU is its areatwo form.

It may be verified that when

(5.2) ~aC+ hUe+

then

(5.3) Uxo~~gnAF~13= U~~ri~7~’~(h13~~—

In equations(5.1) to (5.3) inclusive the indices range from 1 to 5. If they are
restricted to range from 1 to 4 and G5 is replaced by G, these equations reduce

to those that obtain in a four-dimensional space-time.

Following the observation of Nester [3] and Moreschi and Sparling [5] we

note that we may write equation (5.1) as

(5.4) l6flGsPUUU=~EU13_do~13
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with

(5.5) Ea13= Ea13~(~*S~~ p*5 ~/)

wherethe quantitiesenteringinto this equationaredefinedas follows:

(5.6) E01376e= (‘I)_lI2eaPYb�

is a pure imaginary quantity with ea137& the Levi-Civita alternating tensor density,

(5.7)

as above the semi-colondenotesthe covariant derivative and the ~ are defined
by the analoguesof equations(A.14), namely

(5.8) 2S
13=’y713—7137.

When the aregiven by equations(5.2) we have

1 1
~ —~

(5.9) w~= 6~+— h 13flfla+

(5.10) 2(#~/.~=h�a,13_he~,a~

It then follows from equations(3.17) and (A.15), the reality of 11*SU13SJIand the

fact that

+ + Wt.~d= 0

that

= — E~U~vw~

where

(5.11) U
0= ~*7UI4,

Hence

EUP — öUC� U~w~
— E

and is equalto the integrandin euqation(5.1).
Equation(5.1)may thenbewritten as
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(5.12) l6~G5~Ua=~_Ea13dC~13=fE~13fl~d4V

where ~ is a four dimensional hypersurface boundedby S, n is it unit normal,

d4v is its invariantvolume element,andStokes’ theoremhasbeenapplied.
We now turn to the evaluation of the four dimensionalintegral in equations

(5.12). It follows from equations (5.5),(4.4),(A.16) and (A.17) that

= — 4(~/;713~~~7�a + ~L/~7~ ~J~~713a— ~(J*7U 11~7~~—

(5.13) — 7137a7e~)+

where is the Einstein tensor formed from ‘Ia13’ (it has beenevaluatedfor
the casewhereequation(1.1) holdsin section2),

U
13

and is a future oriented non-space-like vector.

We shall assume that the hypersurfaceZ is space-likeand has as its normal

the future pointing time-like vector

a = e

that is

flU = —

Then

(5.14) nEr= — w~E13=+2I~
13e4UU$_4(7-1C~~+ ‘~13y1~5~e,,1i)

where

7~=_flyU,

(5.15) 13�

k ~y = (‘y + e4 e4) ~

andthusk
13~is the inducedpositive definite metricon

It thenfollows that

( do
(5.16) l67rG P UU=thEa13_~_~~~~0

5U J 2

S

under the assumptions that the analogue of the Witten equation, the equation

(5.17) ‘~~1i=0
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holds,and that

(5.18)

for arbitrary future pointing non-spacelikevectorsU’~and n ~. Equation (5.17)

will be discussedin Section7.
The inequality (5.16) implies that for any Lorentzian five dimensional asym-

ptotically flat space V~for whichequations(5.17) andthe inequality (5.1 8) hold

haspositive energy, that is P~is afuture pointing non spacelike vector.

When V~admits a killing vector ~, ~U in the inequality (5.18) is restrictedto

be suchthat

= 0,

W= 1

and

= — 8irG(1~+

the inequality(5.18)implies that

27~ Vilfik ~ (47r)hI2G”2~J~na(

where

Ug

V~=

is an arbitrary future pointing non-space-like vector in as is ~_a~

6. THE INTEGRAL OVER S

In evaluatingthis integral for the case where equation (1 .1) holds, we shall

assume that the three dimensional space S consistsof the direct product of S’,

a circle over which x5 varies, and S’ a two dimensional surface in ~‘, the three

dimensionalspacex4 = constantandx5 = constant.We denoteby r thedistance

of points in ~‘ from a fixed point (the origin and take as S’ thepoints of ~‘ for

which r takes on a large constant value.

We also assumethat V
5 has a metric tensorgivenby equation(1 .1) and that

onS

0<x
5~2irR

0

= + 0 —r
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W=l+0 —

r

A1 = 0 —

r

andneglecttermsof orderr” with n> 2.

We shall further assume that the threesurfaceS is given by the parametric

equations

x’=x’(u’,u
2) (i~4,5)

(6.1) x4= constant

x5 =

Then

(6.2) do~
13= ~ E135dr~~

where

ax
7 axt ax~

(6.3) ~ — —du1du2du3, (a,b=1,2,3).
au” au~’ auc

It follows from equations(6.1) that

2dr~~= (ö~
17+ + ~5,3i) dr” dx

5

where

axi ax’ ax1 ax!
dr” = — — — — du1du2 =

öu1 au2 au2 au’
(6.4)

=——E”~1dö~
2

It then follows from equations (5.5) that

— EU13da~
13=2i[~*’I5~. — ~*7~ +

(6.5) 1

+ (~*Sjj~5_ ~j~)]drh1dx5
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where

(6.6) = ‘~ —A1-~= W~7

andhence

(6.7) +~=2g~l4.

From equations(3.18)and(3.19),andsince~i is assumedto beindependentof

x
5 we have

= ~I/ +A
1K5~—

(6.8)

i/i5 = K5 ~‘ = — [F~u1 + 2 .~ ]
with

(6.9) ~‘ =g’
1~

(6.10) 2511 ~i~/_y~i,

and the strokedenotesthe covariantderivativeof spinorsover V
4.

It follows from equations(A.l 5), (A.l 8) and(6.8) that

_Ea13dO~13=W[E1J~ +(i~7U5+i~ji//*~+

+iE1/~1Ulg~~m.~dr1/]dx5

where

2F7 = EifklF”
1,

a pureimaginaryquantityasis i/,* ~/j,

U
5=i/,*~y,

and

Ul’=i/i*7~i/,.

We define
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i~f~7dr~’=81rQE,

./5~

(6.11) dr11 = 8~QM

is,

i~E
11~1gkmW1m U

1dr” = l6~Gw~U~.

The quantity ~M vanisheswhen equation (2.20) holds throughout the two

surface5’, that is, when i/~is non-singular.The vector w,~vanisheswhenWis

constant.
In view of these definitions and the fact that for the case we are considering

all quantities are independent of x5, we have

1 (1
~— EU13do = l6~G[(p, + w,)U’ +

2irR
0 J 2

(6.12) + G
2~”2 QEU

5+ iG_h
12 /2QM~*~]~ 0.

The inequality (6.12) when applied to the case where U’ = ö~impliesthat

(6.13) rn = —p
4~w4+G~’

2ir~2(Q~+~

Aside from the units used, this result is that given by Moreschi and Sparling

[5] anddiffers from that of GibbonsandHull [61 by a factor of 1/2 in thecharges.

If for arbitrary hypersurfaces t = constant,equation (5.17) holds and the

inequalities (6.1 2) and (6.13) are replaced by equalities we must have

(6.14)

(6.15) = o

for each such hypersurfaces.That is ~1imust be a covariantly constantspinor

field in V5, in other words,we musthave

(6.16) ,li=0.

We shall prove in section 8 that if a with metric given by (1 .1) is regular,

equations(6.14) hold, V5 is asymptotically flat andadmits solutionsof equation

(6.15) independent of x5, then it hasa vanishingcurvaturetensorthat is, is flat.
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The proof consistsof showingtha such V5’s are stationaryand henceLichnero-
wicz’s results on stationary Klein-Kaluza and Jordan-Thirytheories [1] apply.
Thuswe find that spaces V5 satisfyingthe aboveconditionswhich havevanishing
energy-momentumvectorsP~are flat.

7. THE WITTEN EQUATION IN V5

This equationis given by equation(5.17),namely

(7.1) yi/i.13=0

where -~ is definedin termsof ‘y~by equation(5.15).We want to discusssolu-
tions of this equationthat are independentof x

5. We shall first reduceequation

(7.1) to an equationin V~,the four dimensionalspacewith metric tensorg.
1. We

observethat it follows from equation(5.15) that

(7.2) = k”5~= h”(’~ —A1’y5) =

where

(7.3) h’
1 =g” +e~e~.

The tensor h.. is the metric inducedby the metric g
11 on the subspacet = x

4 =

= constantin V
4.

We also have

(7.4) ‘~ = W~
1y

5—h”3~A1.

It is a consequenceof equations(7.2), (7.4) and(3.24) that equation(7.1) may

be written as

(7.5)

where

A = —

andK5 is given by equation(3.23).Thuswe have

(7.6) A = ~1!7 ~ Ww,i ~
The existenceof solutionsof equations(7.5) with generalspin matricesA has

beenproven by T.H. Parker[7].
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8. COVARIANT CONSTANT SPINORSIN V5

Suchspinorssatisfy the equation

(8.1)

If in additionthey are independentof x
5, that is if

(8.2)

andequations(8.1) and(8.2)may be written as

(8.3) /_~I1~1~1/7’75t~0

and

~. 1
(8.4)

W~J

respectively.The first of equations(8.3) are similar to but different from the
equationsused by Gibbonsand Hull in their introductionof a supercovariant
derivativeof spinors[6].

Thevectorfield ~ definedas

(8.5) = i/,~*7U i/,~

where i/i is covanantlyconstant,that is, satisfiesequations(8.3) and (8.4) may
be shownto be timelike exceptwhen

(8.6) F,J=Wk=O.

It is a consequenceof equations(8.1) and(8.2) that

(8.7) ~ = ~5 = 0.

Hence ~ is a time-like Killing vector in V
5. That is if equations(8.1) hold V5

is stationaryand whenequations(1.1) hold, the Killing vector~ is independent
of x

5.
We next show that the space-time 114 with metric g,

1 is stationary that is,

admitsa time-like Killing vector~ suchthat the Lie derivativeof Wand with
respectto ~‘ vanishes.TheKilling equationsin V5 are

(8.8) ~U13,7 + + 7713~13r 0.

By settinga 13 = 5 onemay showthat

(8.9) -
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where

(8.10)

On setting a = 5, ~= i in equations (8.8) one finds that

(8.11) E’A111 + A1E1’, + E~,= 0.

It is a consequenceof the relation between75 and 7~that

(8.12) = W’~ —As’.

On substituting this equation into equation (8.11) one finds that

(8.13) = — -~ (W’~)1.

Since

k~=i/,*~j,

it follows from equations(8.3) that

~5Ij =—F,1~’.

It is a consequenceof this result and equation (8.13) that

(8.14) ~ — 0,

that is, ~ is constant.
Equations(8.3) and (8.10)imply that

(8.15)

and hence

(8.16)

that is ~ is a time-like Killing vector of the space-time 114 with metric tensor
g11. It follows from equations(8.9) and (8.11) that the Lie derivativewith respect

to ~‘ of the tensor F~vanishes,that is

~ ÷i~~=0.

On making the transformation of coordinates in V5 of the form

xS*=xS÷i/1(xI)

= ~‘(x
1)

and thereby insuring that
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(8.17)

while

—

is alsoa Killing vectorin V~.In such a coordinatesystemequation(8.11)becomes

+ A1~= 0.

Thus V4 admits a one parametergroup of isometriesgeneratedby the Killing
vector ~‘, underwhich the scalarWand the vectorfield A. are invariant. If the

hypersurfacesx
5 = constantin V

5 are globally isomorphicto the direct product

of a threespace 113 and the real line, then V5 is isomorphic to the product V3 x
x R x S

1 and is said to be a stationary space.It is said to be completeif V
3 is

completeandasymptoticallyflat if V3 is.
Lichnerowicz has shown [1] that enerywhereregular,asympotically flat (or

complete)stationary spaces J’~with metrics given by equation(1 .1) for which

F~13= 0 are flat, that is have

B’~1376 = 0

everywhere. Thus the spaces V~which are everywhereregular,asymptotically

flat, have Einstein tensorssatisfying the inequality (5.18) and havevanishing
energy-momentumvectorsP~are flat.

9. THE SPACE V5

This space is a five dimensional space whose metric tensor is conformal

to thatof V~,that is

(9.1)

where is given by equation (1.1). Weagain define

75 ~ 75
(9.2) j =7 — =e

2’~p’, pv pv

and have

(9.3) = = e2UW2 = e2”y
55

(9.4) ~ (55Y
1’y

5~.

The functionc(x’) is determinedby the requirementthat theintegral
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d5 x,

where ~ is the determinant of ~a13’andB is the scalar curvature of V
5, such that

the coefficient of \‘EjR is constantwhen g is the determinantof and R is

the scalar curvature computed from This conditionimpliesthat

eU= W”
3.

It then follows that

r’~
13= — 2

where BU13 and B are the Ricci tensor and scalarcurvaturedeterminedfrom
are given by

rw 2WW1 [W~ 2WW1
— I ;a ;13 I ‘Ye’ ;‘y 5(9.5) F =F —i——— +~13I— —— 7

U U LW 3 W
2 LW 3 W2

In theseequationsthe semi-colondenotesthe covariant derivativewith respect

to 7~.

It may be shown that

ITa1, =r~e=e2°F~
13ee

is given by

(9.6) e
2”JTab= Ga~+~87rGW2i;~~+

where is givenby equation (2.21) and

(9.7) 3W2T~=2[W,aW,b_ .~. ~ W
1W~].

It has been shown (cf. [13]) that is the stress energy tensor of a perfect fluid

that satisfies the equationof state

p=w

where p is the pressure and w is the energy density; and further the motion is
irrotational.That is,

7~=(w +p)~O~b—prjilb

where
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I W
1W1g”

= p = — ,
3 W

2
(9.8)

X
1 = VW..W~gJ”

The relation between the scalar x and the scalar that occurs in the Brans-Dicke

theory of gravitation is given in [13].
In additionwe have

(9.9) e~F~=—(WF~)1~

and

— 1 /.~W 4 WWb
(9.10) e

2aF
55=_-_(R+3F4b~F,~b)+___— -fl

whereFab is givenby equation(2.13).
The spin connection K in V~is relatedto K7 of V~by the equations

W
(9.11) K =K +—~--~~.

~ ‘~‘ 6W ~

It then follows from equations (3.18)and (3.19)that

4k~= W[FIJS~1!+ __~L’

(9.12)
2 W.

4K1 = 4K~+ 4A1K5— 2~.~y5+ — —~ Sf.
‘—3W

The discussion of § 5 may be applied to the space J’~ when the ‘I~ and the spin-

-covariantderivativesarereplacedby

(9.13) = e°-y

and

(9.14) ~ IIJ,U+KUi/~~

respectively. Then it follows that ~U, the total energy momentum 5-vector in

V5, is a futurepointing non space-likevector, that is, V5 has positive energy when

(9.15) ~~:c = ~ = 0
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and

(9.16)

where the colon denotesthe covariantderivativewith respectto the spin connec-

tion and r’~13is given above.
It follows from equations(9.12), the discussionsimilar to that given in § 7,

and Parker’sresults[7], that solutionsof equations(9.15)exist.
When V5 admitsa Killing vector~ so doesV5. If n~is restrictedto be suchthat

= 0 and the coordinate system in V~is such that ~ = ~, the inequality
(9.16) implies that in this coordinatesystem

US
U~ñ~(G~~+ 87rW

22~+7~’)+ — nk(W2(l6irG)1/2f~)
1~ 0.

-- 2W

Setting

(9.17) Gab=_8(Tab+WTab+ ±

87rG

wehave

W
(9.18) T~~~V2n~b~ (4i)

112G~12— j~b + — W
2 4ir

where is given by equation(2.21), .t~is defined by equation (2.20) and

is definedby the first of equations(2.25).

Equations(9.17) state that the source of the gravitational field g
11 depends

linearly on the stress-energy~tensor of the electromagneticfield describedby

that of the scalar field W (which in turn describesthe variation of the <<gravi-

tational constant>>) and the tensor T~, the stress-energytensorof additional
fields arisingin particularproblems.
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Appendix

THE MATRICES y~,7AND H

A. The Matrices ‘y~,yand H

In this appendixwhich, is basedon the notesof a seminaron <<Geometryof

Complex Domains>> conductedby 0. Veblen and J. von Neumannin 1935-36
[12], we construct and discuss the algebraic properties of a set of 2v + 1, 2~x 21~

matrices ~ (a = 1, 2,3 2u + 1) which satisfy the equation

(Al)

Weshall subsequently set v = 2 and then define matricesy~which satisfy

(A.2) 7U713+713’YU 2y~1314

where is the metric tensor of V5. We begin with the three2 x 2 matrices

(A.3) 13(1)( i) 13(1)( 1) $(l)j13(1)13(2)( 0~)

anddefine

13(�_1) U

~ ( ~0 _p~v_u) p = 0,1 2(v— 1)

(A.4) p
0 /0

1k
13(U) — ~

2v—1 — — ~‘k 0 2� ~

where is the unit
2�—i ~ 2~—~matrix.

It follows by inductionthat

(A.5) = (~j)Ufl(U) . .

and that (on omitting thesuperscriptv)

(A.6) j3~’=(— l)U13~ j3~= (— l)Uj3~ ~T ~

where A T is the transpose of the matrix A and a is not summed in these equa-
tions. That is, thematrices are hermitian. The matrices

l,13~,J3~f313(a<13),131313~3(a<13<y)

~U1

13U

2 ..IIU(al<oL2<. . ‘(a)
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are a set of 2’~linearly independentmatriceswhich form a basis for all 2~x 2’~

complexmatrices.
We nextdefine

y1=8,(i=l,2,3,5 2u)

(A.7) 74=ij34

1 =

Thenthe 2v + 1 matricesy,~satisfy

(A.8) y~y~+y~’y~= 277~=2(&~—2&~&~)

with ‘y~(a~ 4) hermitianand74 anti-hermitian.

It follows from equations (A.l) and(AS) that,whenthe d’s all differ,

(A.9) ~2v= ~

where

(A.lO)

and

(All) ?~dz~=&~.

We define

(A.12) p!SUU = ‘~1’Id2... ‘I13 ~ (p = 2,3 ... v).

The traces of the matrices ‘y~~S vanish.Further vanishes unless all

the indices a, are different and in that case

S=’I’I ... ‘I_Up.

It is then a consequence of the equation (A.9) that

S S =—(i)’~E ‘I’

(A.13) + ~

+ S ~
~1~2v—4 ~1~2v—2

When u = 2, equations (A.12) and (A.l3) become

(A.l4)
25U~ = 7U’I~’I3’IU’

and

S
13S5 = E~135�7y~+ ~ — ~p�~US~ 14

(A 15) --
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respectively.
It is a furtherconsequenceof equation(A.9) that

(A.l6) Eal ~2v = (2v —2)! (i)VS~t.
~1—2v~2

Since

=

it may be shownthat

(A.17) ~ yCi
7~_yC~~

and that

(A.18) 5_a~377y7_5_U_s 2(’y~fld2—’y~flei)

From formulas similar to equations (A.l3) it may be verified that the trace of

the products of SU and S~’ ~ vanish unlessp = q and in that case

(A.19) 5C1~PS (J)2(Pl)1~Ul...UP.

An arbitrarycomplex2’~x 2~matrix x maybe expressedas

(A.20) X=yl~+y~’I+ ~ — ~Qi ~
p=2 P~

with

2~y= traceX

(A.21) 2~y~= trace (X~1a)

2~y~~ (— l)2
1~trace(XS~1”~P).

On substituting these expressions for y ya ~ai.~s into (A.2)) and using the

fact that X is an arbitrary matrix we find that

(A.22) 2~6~6~= +

7UD CYUAB +~ (~ l)2~l)SU1...UPDCS~ aB’

whereA, B, C andD takeon valuesfrom 1 to 2~.
When thematricesy aregivenas abovewe find that thematrix

(A.23) y= p-y~y3...

where p is a complex number, satisfies
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(A.24) 7Te7 e=(_I)2~~

and that

(A.25) ~l’I’I~)T~f’I’I~ f=(_l)ve.

That is when u is even, the matrices-y, ~ are all symmetricor all antisymmetric.
When v = 2 we may choose-ysothat thecomponents of the antisymmetric

matrix ‘I are normalizedsothat

(A.26) ‘IAB’ICD~~”~= —8 (A,B, C,D = 1,2,3,4).

The matrix 7 and its inverse with components

(A.27) 27AB = ~ABCD7

which satisfies the equation

(A.28) ‘IAB7~~

may be used to raise and lower indices of spinors.The rules are such that in
raising and lowering indices we always sum with respectto the secondindex

on the ‘I’S involved.
The matrices

LM — L MN —

‘Ia — ‘IaN’I ~‘
1a’I

are anti-symmetric and together with ~ =

7LM form abasisfor all 4 x 4 anti-

-symmetric matrices X = XLM = — XT. Since

LM — L MN — L —‘I~ ‘ILM’IaN’I ‘ILM’IaL

the quantities

2 e ~—2 NaLM LMFQ a — ‘LN M~

That is the processof lowering the indices on ‘I~I~Mby meansof y gives the

same resultsas manipulatinga pair of indices by meansof the four index Levi-
-Civita anti-symmetric density. These two methodsof manipulating indices

werediscussedby Veblen[9].

He also used the fact any anti-symmetric matrix XLM may be expressed as

2X~=X’II.M+Xa’I~I~

where

2X——X’~
— ‘ILM

-— 7~.
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On substitutiongfor X and xa into the aboveequationwe find that we must

have
‘A29’ ~ PQ_ ‘~—2ö~

7 ~ — LM~

This equationmaybe written as

(A.30) -
7~L’IP2yLPy+2~L15P5LbP

from which it follows that

(A.31) Sel~NSUiQ= —4(~~+‘I’~’INQ~

Equations(A.30) and (A.31) hold only in the casev = 2 where as equations
(A.22) hold for arbitraryv.

Note that equation(A.23) definesthe matrix ‘I = ‘IAB in a particularcoordi-

natesystem in alinear spaceS2~.In anothercoordinatesystemobtainedfrom this
one by the transformation

,rA.TA 1B
— B~’

we have

T

7 t ‘It

where t is the matrix inverseto the matrix T = TAB II
In the coordinatesystemin which equation (A.23) holds the matrix

(A.32) H=I~HAB~I=’I4

is anti-hermitian.That is

JIT. —H.

The (2v + 1) matricesH’I(a = 1, 2 2v + 1) are hermitian,that is

(A.33)

It then follows that

(A.34) (HS )T=(_I)i(HS )=±HS

Thusthe matricesHS are hermitianwhen

(A.35) (1 = 2s) b = I or 2 mod 4

andare anti-hermitianwhen

(A.36) (1 = 2s+ 1) b = 3 or 0 mod4.

The matrix H hasthe transformationlaw
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H’ =TTHt

and the matricesH7 , HS havesimilarones.
~ Ul..Up

Whenw~are a set of flve one formsin V
5 suchthat

(A.37) = ‘laS

where‘y,,~is a metric tensorin V2~+ the 2” x 2” matrices

(A.38) ‘I~=

satisfy equations(A.2) whenu = 2 and the matrices

(A.39)

wheree~are suchthat

(A.40) w~e=

satisfy

(A.4l) trace(~yC~y13)= 2”6~.

The matrices ‘I~ (and yC~) determine a basis for all 2” x 2” matrices obtained

from the basis discussed above by replacing‘y,, (and ‘Ia) by the former matrices.

One usesequations(A.38) and (A.39) to accomplishthe replacement.It then

follows that the equationsgiven abovesuch as equations(A.8) through(A.22)

may be written as equationsinvolving the
7~‘s provided the ~ (and ~ are

replacedby ‘Ia13 (and‘Ia13) respectively. ——

In casev = 2 whenthe are those given in Section2, we have

(A.42) = + WA
175

(A.43) 75 = Wy5

where

(A.44) y’j~+ = 2g11 14

when

(A.45) = W~’I.

Then

= 7IU’I = y’ = g
11~.

(A.46) ~

7 W (
75—WA’~).

Thematrices
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(A.47) 2S~13=2w~4S~6= ‘Ia’I13’I13’Ia

aresuchthat

= S~+ WA1’I~175— WA1~y5

(A.48) —

where

2S~,=j1~—~j1

(A.49) S~’=

S
5t = W~1y

5~—A1S”.
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